
Development and Performance of a Scalable Version 
of a Nonhydrostatic Atmospheric Model 

 
Arthur A. Mirin and Gayle A. Sugiyama 

Atmospheric Science Division, 
Lawrence Livermore National Laboratory, Livermore, CA 

 
Sue Chen, Richard M. Hodur, Teddy R. Holt, and Jerome M. Schmidt 

Marine Meteorology Division, 
Naval Research Laboratory, Monterey, CA 

 
Abstract 

 
The atmospheric forecast model of the Naval Research Laboratory's (NRL) Coupled 
Ocean/Atmosphere Mesoscale Prediction System (COAMPS) has been developed into a parallel, 
scalable model in a joint collaborative effort with Lawrence Livermore National Laboratory 
(LLNL). The new version of COAMPS has become the standard model of use at NRL and in 
LLNL's Atmospheric Science Division. The main purpose of this enterprise has been to take 
advantage of emerging scalable technology, to treat finer spatial and temporal resolutions needed in 
complex topographical or atmospheric conditions, as well as to allow the utilization of improved 
but computationally expensive physics packages. The parallel implementation facilitates the ability 
to provide real-time, high-resolution, multi-day numerical weather predictions for forecaster 
guidance, input to atmospheric dispersion simulations, and forecast ensembles. 
 



Introduction 
 
The three-dimensional Coupled Ocean/Atmosphere Mesoscale Prediction System (COAMPS) 
originally developed by the Naval Research Laboratory (NRL) for serial applications has been 
developed into a parallel, scalable model in a joint collaborative effort with Lawrence Livermore 
National Laboratory (LLNL).  COAMPS consists of atmospheric and ocean data assimilation 
(including data quality control), analysis, initialization, and a nonhydrostatic atmospheric forecast 
model coupled to a hydrostatic ocean model (Hodur 1997).  The atmospheric system has been used 
for operational mesoscale forecasting since 1996.  It has provided products to the meteorological 
community from both a supercomputer central site (Fleet Numerical Meteorology and 
Oceanography Center located in Monterey, CA) and the Department of Energy�s National 
Atmospheric Release Advisory Capability (NARAC) at LLNL.  Regional sites using workstations 
(Naval centers, Universities, and Government Agencies) have recently begun to use COAMPS in 
an operational mode.  In the research community, COAMPS has been used extensively for both 
idealized as well as real data simulations (Haack and Burk 2001, Haack et al 2001, Doyle and 
Shapiro 2000, Doyle et al. 2000, Dorman et al. 2000, Liu et al. 2000, Burk and Haack 2000, 
Westphal et al. 1999). 
      
 

COAMPS description 
 
COAMPS consists of an atmospheric data assimilation system containing a nonhydrostatic 
atmospheric forecast model and an ocean analysis and forecast model.  The initial focus of the 
parallelization effort has been on the atmospheric forecast model.  COAMPS solves the 
nonhydrostatic, compressible form of the dynamical equations, and includes relevant physical 
processes such as explicit moist physics, cumulus convection, and radiation, as well as 
parameterizations for subgrid-scale mixing.  The vertical sigma coordinate is chosen to allow flow 
over an irregular surface and a variety of horizontal coordinate systems can be invoked.  The 
equations are discretized using finite differences on an Arakawa C grid.  The difference scheme is 
fundamentally explicit in the horizontal direction, with subcycling to evolve the faster moving 
sound and gravity waves. Some of the vertical phenomena are integrated implicitly.  Most terms 
are represented to second order accuracy, with options to use fourth order methods for the diffusion 
and advection.   
 
 

Programming practices 
 
The underlying principle in COAMPS programming is that the code be capable of executing 
efficiently across vector, parallel, or symmetric multi-processor (SMP) machines by simply 
changing run-time options.  This necessitates slightly more overhead through additional arrays and 
syntax logic, but pays dividends in flexibility and portability.  The code, originally written in 
Fortran-77, now invokes a number of Fortran-90 constructs.  Memory management is carried out 
using pointers and allocatable arrays.  Representation of physical quantities on multiple grids is 
facilitated using derived data types.  These derived types are used to maximize message lengths by 
taking horizontally-mapped data and creating new data types that include all vertical levels.  Every 
effort is made to adhere to standards in order to achieve portability and minimize the recoding 



needed to accommodate new architectures, and is in effect a form of optimization.  Three specific 
areas related to programming practices will be discussed:  1) domain decomposition, 2) nesting, 
and 3) input/output (I/O).  The differences between practices adopted for the new scalable code and 
the vector (or serial) code will be highlighted. 
 
 
Domain decomposition 
 
The integral design component of the new scalable COAMPS code is the use of horizontal domain 
decomposition.  The decomposition of the entire model domain into subdomains is based upon run-
time, user-specified values of the number of subdomains in the x- and y-directions.  Based upon 
these values the decomposition technique automatically partitions the data among the nodes of a 
parallel machine into as equal a number of grid points per subdomain as possible for each x- or y-
direction.  (Because of the tight vertical coupling that exists in COAMPS, the decomposition is 
limited to the horizontal plane.)  The user is also allowed run-time flexibility in specifying the 
number of grid points to be used in the halo region (usually either one or two grid points).  The 
halo region is necessary to facilitate finite differencing and data communication with nearest 
neighbors.  Because of fourth-order differencing in COAMPS, two halo points are typically used.  
Communication between subdomain processes is achieved using either Message Passing Interface 
(MPI) 1 or 2.  Within each subdomain an additional level of parallelization is provided through the 
use of the de-facto standard OpenMP.  OpenMP directives can also be executed for SMP-only 
applications. 
 
Figure 1 shows a sample single nest COAMPS horizontal domain illustrating the relationship 
between decomposition and halo regions.  The sample domain is dimensioned (1:m,1:n)  (or 23 x 
23) grid points in the x- and y-directions, as indicated by the heavy solid box.  The domain is 
decomposed into nine subdomains (P0 to P8) in a 3 x 3 configuration.  The heavy shaded areas 
indicate the computational region for each subdomain which extend from indices (imin:imax, 
jmin:jmax).  These indices are those automatically computed to evenly distribute the data 
horizontally across subdomains.  In the serial code this extent is analogous to (2:m-1, 2:n-1).  Thus, 
no computations are performed on the outer-most row or column of data except for the 
specification of the lateral boundary condition data.    
 
For this sample domain there are two halo points for each subdomain, illustrated using only 
subdomain 7 (P7) in Figure 1.  The open circles represent grid points within the computational 
domain of P7.  The two solid grid points surrounding the computational points represent the halo 
region for P7.  The extent of P7 with two halo points is from (iminf:imaxf, jminf:jmaxf).  Thus, 
indices for the halo regions are trivially computed as iminf=imax-nb, or imaxf=imax+nb, where nb 
is the number of halo points.  Note that the halo points extend nb points into the neighboring 
subdomains. 
 
Additional indices and variables are computed to expedite communications between processors.  
For example, each processor computes its �physical� extent (which can include points out to the 
boundary of the entire domain), x- and y-direction data widths, neighboring processor relationships 
(i.e., is this processor northernmost? southernmost?), etc.  Indices and variables differ based upon 
whether the user chooses the run-time option for scalable or serial code (or a combination).  For 



serial applications long vector lengths are desired.  However, for scalable code two-dimensional 
loop indices are limited by the horizontal extent of each subdomain.  The logic of the new code 
allows for both types.  This is achieved by specifying loop indices that collapse two-dimensional 
loops into a single dimension to take advantage of vectorization for serial applications, but remain 
as two-dimensional indices for scalable applications.  
 
 
Nesting 
 
An arbitrary number of inner nests can be specified in COAMPS.  The only constraint is that the 
number of grid points be a multiple of three plus one with a consequent 3:1 reduction in horizontal 
resolution.  There is a similar reduction in time step such that the inner (or child) nest is called three 
times for each parent time step.  Each child nest is decomposed in a similar fashion as described in 
the section above.  The added complexity arises from the required communications between the 
parent and child nests.  Figure 2 shows the single nest of Figure 1 with a child nest included.  The 
open circles show the computational area of parent subdomain P0 and the solid circles the two halo 
points.  The heavy solid line through the child nest illustrates the extent of the parent subdomain 
into the child.  Note that because of the 3:1 restriction in nest resolution, parent points coincide 
with every third child point. 
 
For this sample nine subdomain example, the child nest is similarly decomposed with the same 3 x 
3 configuration (Figure 3), though COAMPS does allow different configurations for each nest as 
long as the total number of subdomains is the same.  The child nest is dimensioned (25 x 25 grid 
points) with the two solid grid points surrounding the computational area of child subdomain 3 
(C3) indicating the halo region.  The heavy solid lines through C1, C3, and C4 represent the 
boundaries of parent subdomain P0 (as shown in Figure 2).  For this simple example, the other 
parent subdomains are not shown.  Note however that any given child subdomain can overlap with 
several different parent subdomains. 
 
For one-way interactive nesting, the communication of boundary information is from the parent 
nests to the child nests at every time step of the parent nest.  The boundary information from the 
parent nest is communicated to the child over a user-specified region surrounding the entire child 
domain called the blend zone (Figure 3).  This blend zone is typically five to seven child grid 
points wide on the child nest.  The programming practice used in the nesting strategy to distinguish 
regions of the appropriate parent and child nests that need to be communicated is to employ masks.  
Masks are simply �on or off� switches.  Data points for a given subdomain, be it parent or child, 
are assigned mask values of 1 (�on�) if they are in the blend zone and 0 (�off�) if they are not.  
Masks for each child subdomain are trivially determined from the number of blend zone points on 
the perimeter of the subdomain.  Parent masks are determined based upon the origin reference 
location and extent of the inner nests relative to the parent nest.  Once the masks have been 
determined, each parent subdomain determines, based upon the number of �on� mask values and 
their relationship to child subdomains, whether and where it should send data.  Similarly, child 
subdomains determine from which parent subdomain they should receive based upon their mask 
values and their relationship to the parent subdomains. 
 



The data received from a parent processor is stored in a temporary array that resides on each child 
processor.  Each temporary array (or envelope) is defined in parent coordinate space and is 
designed to just cover the domain size of the entire child subdomain.  Only those parent points 
required to compute the horizontal interpolation within the blend zone on the nest boundaries are 
sent to the envelope array.  Offsets are computed to map the arriving parent grid points into the 
appropriate location within the envelope. Once the parent data points arrive, horizontal 
interpolation from the coarse mesh data of the parent grid to the fine mesh points of the child grid 
is then performed using the previously defined masks.  As illustrated in Figure 4, the position and 
size of the envelope is required to be slightly different for interpolating data to the mass and 
momentum points due to the Arakawa-C grid staggering. 
 
The hatched region in Figure 5 shows the parent envelope for mass points that must be 
communicated from parent P0 to child C3 for the sample horizontal domain.  The region contains 
nine parent grid points that represent the intersection of P0 and the child blend zone on C3.  Similar 
regions would exist for each blend zone region on all child subdomains except C4.  C4 is an 
interior subdomain and does not have an exterior blend zone region. 
 
COAMPS also has the option to allow the inner nests to move in time.  This adds another level of 
complexity to the programming because additional communications and arrays are needed to 
record the movement of the nests.  The strategy employed follows the basic programming practices 
for a fixed nest discussed above.  The communication of boundary information is similar except 
that at the time a nest is moved, the reference points for the parent grid must be reset to allow for 
the correct information to be communicated to the child nests.  In addition, when a child nest is 
moved, the new region in which the nest has moved must be interpolated from existing information 
on the parent nest.  The interpolated region could span across a variety of parent processors and 
require additional communications. 
 
 
Input/Output (I/O) 
 
COAMPS processes a tremendous amount of data for any given analysis and forecast cycle.  Thus, 
efficient handling of the input and output of this data is crucial for good computational 
performance.  The input of initial and boundary condition data into COAMPS is handled using 
either MPI-1 or MPI-2 constructs as specified by the user at run-time.  For either option COAMPS 
uses a designated I/O task that first reads the entire two- or three-dimensional field into its own 
local memory.  Using either MPI-1 or MPI-2, the data are then communicated to the appropriate 
subdomains as specified by the domain decomposition. 
 
The output of COAMPS data can be handled in two separate ways as specified by the user at run-
time.  The first option is to use a designated I/O task similar to the input procedure described 
above.  The I/O task collects data from all subdomains and writes to the designated output file.  The 
other option is to use MPI-2 I/O directives.  In this option each task writes into the designated 
output file only the portion of the data that it contains, using the appropriate location offset.  
Scaling results for real-data COAMPS simulations with MPI-1 versus MPI-2 communications and 
I/O generally show comparable results for configurations with less than 64 processors, but show 
20-30% speedup for MPI-2 over MPI-1 for greater than 64 processors. 



Conclusion 
 

Through collaboration between the Naval Research Laboratory, Monterey and Lawrence 
Livermore National Laboratory, a portable, scalable version of the COAMPS atmospheric forecast 
model has been developed and adopted for numerical weather prediction.  The model agrees with 
and maintains virtually all of the physical capability of the (now frozen) serial version. The 
capability of moving nests has been added. The model uses two-dimensional domain 
decomposition and handles parallelism through MPI with OpenMP.  The model outperforms the 
Cray T90 and scales well to at least 50-100 processors. 
 
 

Acknowledgements 
 
Work performed under the auspices of the U.S.D.O.E. by University of California Lawrence 
Livermore National Laboratory under contract No. W-7405-ENG-48, and by the Naval Research 
Laboratory with support from the Office of Naval Research through Program PE-0602435N and 
from the Department of Defense through Program PE-0603755D. 
 
 

References 
 
Burk, S.D., and T. Haack, 2000:  The dynamics of wave clouds upwind of coastal orography.  Mon. 

Wea. Rev., 128, 1438-1455. 
 
Dorman, C., T. Holt, D. Rogers, and K. Edwards, 2000:  Large-scale structure of the June-July 

1996 marine boundary layer along California and Oregon.   Mon. Wea. Rev., 128, 1632-1652. 
 
Doyle, J.D., and M.A. Shapiro, 2000: A multi-scale simulation of an extreme downslope 

windstorm over Norway.  Meteor. Atmos. Phys., 74, 83-101. 
 
Doyle, J.D., D.R. Durran, B.A. Colle, C. Chen, M.  Georgelin, V. Grubisic, W.R. Hsu, C.Y. Huang, 

D. Landau, Y.L. Lin,  G.S. Poulos, W.Y. Sun, D.B. Webe, M.G. Wuotele, and M. Xue, 2000:  An 
intercomparison of model predicted wave breaking for the 11 Jan 1972 Boulder windstorm.  
Mon. Wea. Rev., 128, 901-914. 

 
Haack, T., and S.D. Burk, 2001: Summer-time marine refractivity conditions along coastal 

California.  J. Appl. Meteor., 40, 673-688. 
 
Haack, T., S.D. Burk, C. Dorman and D. Rogers, 2001:  Supercritical flow interaction within the 

Cape Blanco-Cape Mendocino orographic complex.  Mon. Wea. Rev., 129, 688-708. 
 
Hodur, R.M., 1997:  The Naval Research Laboratory�s Coupled Ocean/Atmosphere Mesoscale 

Prediction System (COAMPS), Mon.Wea. Rev., 125, 1414-1430. 
 
Liu, M., D.L. Westphal, T.R. Holt, and Q. Xu, 2000:  Numerical simulation of a low-level jet over 

complex terrain in Southern Iran.  Mon. Wea. Rev., 128, 1309-1327. 



 
Westphal, D.L., T.R. Holt, S.W. Chang, N.L. Baker, T.F. Hogan, L.R. Brody, R.A. Godfrey, J.S. 

Goerss, D.J. Laws, and C.W. Hines, 1999:  A meteorological re-analysis for the study of Gulf 
War Illness. Wea. Forecasting., 14, 215-241. 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
Figure 1.  COAMPS single nest (m,n) 23 x 23 grid point domain for a 3 x 3 domain decomposition.  
The computational area of each subdomain in shaded.  For subdomain 7 (P7) open circles indicate 
computational grid points and solid circles indicate the two halo points. 

(1,1)

(m,n)(1,n)

(m,1)(1,1)

(m,n)(1,n)

(m,1)

P0 P1 P2

P6

P3 P4 P5

P7 P8

(imin,jmin) 

(imax,jmax)

(1,1)

(m,n)(1,n)

(m,1)

(iminf,jminf)

(imaxf,jmaxf) 

P7



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.  COAMPS parent nest domain similar to Figure 1, but in addition showing the overlap 
with a child nest.  The open circles show the computational points and the closed circles show the 
two halo points of P0.  The child nest is a 25 x 25 grid point domain.  The heavy solid lines through 
the center of the child domain represent the outer extent of the parent subdomain for P0 that 
intersect with the child domain, as shown in Figure 3. 

(1,1)

(m,n)(1,n)

(m,1)(1,1)

(m,n)(1,n)

(m,1)

P0 P1 P2

P6

P3 P4 P5

P7 P8

(1,1)

(m,n)(1,n)

(m,1)

P7



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.  COAMPS child nest with 25 x 25 grid points and 3 x 3 domain decomposition.  The 
heavy solid lines and larger solid circles represent the parent processor P0 as in Figure 2.  The 
smaller open circles are the computational points and the closed circles are the two halo points of 
C3.  The seven point blend zone is the area outside the dashed box. 
 
 

C2 

C5 

C6 C7 C8 

 

C0 C1

C4P3 C3 
    7 point 
  blend zone

Parent P0

Parent P0



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

 
 

            
                      Figure 4.  1-D envelope structure for an Arakawa C-grid. 

Envelope Boundary for Mass Points (ππππ)

Envelope Boundary for Momentum Points (u)

            u          π          u          π          u          π          u          π          u

π  u  π  u  π  u  π  u  π  u  π  u  π  u π  u  π  u  π  u  Child  
Stagger

Parent  
Stagger

C0
Left Nest 
Boundary 

Nest blend 
     zone 

Parent points sent
    to envelope 

Nest Processor 
Boundary 

x



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5.  Sample COAMPS child nest and parent nest similar to Figure 3.  The nine larger solid 
circles in the hatched region are the envelope of parent mass grid points that must be 
communicated from parent P0 to child C3 based upon the given seven point child blend zone.  In 
this hatched region, mask values for parent and child nests are both equal to one. 

C2

C5

C6 C7 C8

 

C0 C1

C4
    7 point 
  blend zone

Parent P0

Parent P0

C3 


